Video Solution on Website:-

Video Solution on YouTube:-

https://youtu.be/fe1L15gCivs

Written Solution on Website:-
 https://physicsaholics.com/note/notesDetalis/69

Q 1. In $S=a+b t+c t^{2}, \mathrm{~S}$ is measured in meters and t in seconds. The unit of c is:
(a) $m s^{-2}$
(b) m
(c) $m s^{-1}$
(d) None

Q 2. A physical quantity x depends on quantities y and z as follows: $x=A y+B \tan (C z)$, where A, B and C are constants. Which of the following do not have the same dimensions?
(a) x and B
(b) C and z^{-1}
(c) y and B / A
(d) x and A

Q 3. In the relation $P=\frac{\alpha}{\beta} e^{-\frac{\alpha Z}{k \theta}}, P$ is pressure, Z is the distance, k is Boltzmann constant and θ is the temperature, The dimensional formula of β vill be (Hint:- Unit of Boltzmann constant is J / K)
(a) $\left[M^{0} L^{2} T^{0}\right]$
(b) $\left[M^{1} L^{2} T^{1}\right]$
(c) $\left[M^{1} L^{0} T^{-1}\right]$
(d) $\left[M^{0} L^{2} T^{-1}\right]$

Q 4. The radius of nucleus is $r=r_{0} A^{1 / 3}$ where A is mass number. The dimensions of r_{0} is:
(a) $\left[\mathrm{MLT} \mathrm{T}^{-2}\right]$
(b) $\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1}\right]$
(c) $\left[\mathrm{M}^{0} \mathrm{~L} \mathrm{~T}^{0}\right]$
(d) none of these

Q 5. A and B have different dimensions. Then which of the following relation will be meaningful?
(a) $\left[\frac{A}{B}\right]$
(b) $[A-B]$
(c) $[A+B]$
(d) $\left[e^{\frac{A}{B}}\right]$

Q 6. If $v=\frac{A}{t}+B t^{2}+c t^{3}$ where v is velocity, t is time A, B and C are constant then the dimensional formula of B is:
(a) $\left[M^{0} L T^{0}\right]$
(b) $\left[M L^{0} T^{0}\right]$
(c) $\left[M^{0} L^{0} T^{0}\right]$
(d) $\left[M^{0} L T^{-3}\right]$

Q 7. $\quad X=3 Y Z^{2}$ find dimensions of Y in (MKSA) system, if X and Z are the dimensions of capacitance and magnetic field respectively:
[Hint:- Unit of capacitance of a capacitor is coulamb ${ }^{2} / \mathrm{J}$ and unit of magnetic field $=$ $\left.\mathrm{kg} . \mathrm{s}^{-2} . A^{-1}\right]$
(a) $\left[M^{-3} L^{-2} T^{-4} A^{-1}\right]$
(b) $\left[M L^{-2}\right]$
(c) $\left[M^{-3} L^{-2} T^{4} A^{4}\right]$
(d) $\left[M^{-3} L^{-2} T^{8} A^{4}\right]$

Q 8. The dimensions of $\frac{a}{b}$ in the equation $P=\frac{a-t^{2}}{b x}$ where P is pressure, x is distance and t is time are:
(a) $\mathrm{M}^{2} \mathrm{LT}^{-3}$
(b) MT^{-2}
(c) $\mathrm{ML}^{3} \mathrm{~T}^{-1}$
(d) LT^{-3}

Q 9. The division of energy by time is X . The dimensional formula of X is same as that of [Hint:- Momentum $=$ mass \times velocity, Power $=$ force \times velocity, Torque $=$ Force \times perpendicular distance]
(a) Momentum
(b) Power
(c) Torque
(d) None of these

Q 10. Write the dimensions of $\mathrm{a} \times \mathrm{b}$ in the relation $E=\frac{b-x^{2}}{a t}$. Where E is the energy, x is the displacement and t is time
(a) $M L^{2} T$
(b) $M^{-1} L^{2} T^{1}$
(c) $M L^{2} T^{-2}$
(d) $M L T^{-2}$

Answer Key

	$\text { Q. } 2 \mathrm{~d}$	Q. 3 a	Q. 4 c	Q. 5 a
Q. 6 d	Q. 7 d	Q. 8 b	Q. 9 b	Q. 10 b

Access to curated test series
© Daily practice questions
© India's best educators
© Interactive live classes
1:1 Live mentorship
Live doubt solving

42 months
No cost EMI

$\left.\begin{array}{lr}\hline 18 \text { months } & \text { ₹2,887/mo } \\ \text { No cost EMI } & \text { ₹51,974 }\end{array}\right\rangle$

To be paid as a one-time payment

PHYSICSLIVE

To be paid as a one-time payment
Use code PHYSICSLIVE to get Maximum OFF on Unacademy PLUS / Iconic and learn from India's Top Faculties

Written Solution

DPP-2 Principle of Homogeneity
 By Physicsaholics Team

Solution: 1

$$
S=a+b t+c t^{2}
$$

Whit of $c=$?
to add two inguinal ancontities their unites should be same.
so; Unit of s Crit of $a=$
Whit at U nt unit of $c t^{2}$
unit of $s=m$ st me Unit of $c=m \mathrm{~s}^{-2}$

Ans. a

Solution: 2

$$
x=A y+B \tan (C z)
$$

$[c][z]=$ Dimension less

$$
\text { so, }[c]=\left[z^{-1}\right]
$$

And

$$
\begin{aligned}
& \text { and } \left.[n]=[A y]=[A y]=[B],[y]=\left[\frac{n}{n}\right]\right] \\
& \text { And }[n][[A]:[n]=[A y]
\end{aligned}
$$

Ans. d

Solution: 3

$$
\stackrel{\beta}{p}=\frac{\alpha}{\beta} e^{-\frac{\alpha z}{k \theta}}
$$

Power is dimension less $\left.\Rightarrow[\alpha]=\left[\frac{K Q}{z}\right]=\frac{E}{Z}\right]=\frac{M L^{2} T^{-2}}{L}$

$$
\Rightarrow \quad[\alpha]=\omega_{n}\left[\frac{1}{5}\right.
$$

Since. $e^{-\frac{\alpha z}{k \theta}}$ is dimensionless. $\Rightarrow[p]=\left(\frac{\alpha}{\beta}\right]$

$$
\Rightarrow \square \beta=\left[\frac{\alpha}{p}\right]=\frac{M L T-z}{M t^{-1} T^{-2}}=M^{0} L^{2} T^{0}
$$

Ans. a

Solution: 4

$$
r=r_{0} A^{1 / 3}=\text { Radius atWuclaie }
$$

\qquad

$$
A \rightarrow \text { Mass number }
$$

$$
\text { of atom. } b
$$

$$
=\text { Dimonstronaless }
$$

$$
\begin{aligned}
& [x]]=L \\
& \sqrt[r]{r 0}]=1 \text { or } \mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{\circ}
\end{aligned}
$$

is A \& B has different dimensions then $A+B=N 0 t$ Postibic

$$
A-B=x a t \text { Posable }
$$

$\because \frac{A}{B}=$ mus have some dimonsia
(D) bat $e^{b / 23}$ canst power of e canst hare dimension.

$$
\therefore \frac{\overrightarrow{7}}{\frac{B}{B}}=\text { possible. only. }
$$

Ans. a

Solution: 6

$$
\begin{aligned}
& V=\frac{A}{t}+B t^{2}+C A^{3} \\
& \left.[v]=\left[\frac{t}{t}\right]=\left[b t^{2}\right]\right]=[\operatorname{ct}+3 \\
& \text { [v] } \pi\left[\frac{1}{2 x}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { [is 子an } \mathrm{LT}^{-3} \text { or } \mathrm{M}^{0} \mathrm{~L}^{2} \mathrm{~T}^{-3}
\end{aligned}
$$

Solution:
${ }^{7}$ Unit of capacitance $=\frac{\text { Coulomb }{ }^{2}}{J}=\frac{A^{2} S_{S c}{ }^{2}}{J}$

$$
\begin{aligned}
& \Rightarrow[x]=\frac{A^{2} T^{2}}{M L^{2} T^{-2}}=M M^{-1} C^{-2} T^{4} A^{2} \\
& {\left[Z^{2}\right]=\left[B^{2}\right] \Rightarrow\left(M T^{-3} A^{-1}\right)^{2}=M M^{2}\left(T^{-3} A^{2}\binom{\text { from unit of }}{\text { magnaticfirld }}\right.} \\
&
\end{aligned}
$$

$A_{N s}(d)$

Solution: 8

$$
\left[B B=M^{-1} T^{4} C\right.
$$

So;

$$
\left[\frac{a}{b}\right]=\frac{T^{2}}{(D)=\frac{M^{1} T^{-2}}{M T^{4}}}+\frac{M^{\prime} L^{0} T^{-2}}{}
$$

$$
\begin{aligned}
& P=\frac{a-t^{2}}{b x} \\
& \text { for } a-t^{2} \\
& {[a]=\left[t^{2}\right]} \\
& {[a]=T^{2}-0} \\
& \text { ह } \quad d[P]=\left[\frac{a-t^{2}}{b n}\right] \\
& {[1]=\frac{\left[a-z^{2}\right]}{[8[][x]}} \\
& {[b]=\frac{T^{2}}{M L^{2} T^{2}-L}} \\
& \Rightarrow O R \\
& \Rightarrow \quad[p]=\left[\frac{a}{b x}\right] \\
& \Rightarrow\left[\frac{a}{b_{0}}\right]=[p][x] \\
& =M L^{-1} T^{-2} L \\
& =M^{1} l^{0} T^{-2}
\end{aligned}
$$

Solution: 9

Solution: 10

$$
\begin{aligned}
E & =\frac{b-x^{2}}{a t} \\
{[E] } & =M \cdot L^{2} T^{-2} \\
{[x] } & =L \\
{[t] } & =T
\end{aligned}
$$

$b-x^{2} \rightarrow \sqrt{2} x^{2}$ sin have some dimensions

$$
\begin{aligned}
& \Rightarrow\left[b=\left[M^{2}\right]=L^{2}\right. \\
& {[a t]=\frac{\left[b-l^{2}\right]}{M L^{2} T^{2}}} \\
& {[a]\left[M^{2}\right.} \\
& {\left[[a]=M^{-1} T^{1}\right.}
\end{aligned}
$$

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/49

Video Solution on YouTube:-
https://youtu.be/fe1L15gCivs

Written Solution on Website:-

- subsCRIBE

0
@ NEET Physics
@IITJEE_Physics physicsaholics.com

CLICK

Chalo

